Infectious Disease Models 5 --Vaccination

CMPT 858 Nathaniel Osgood 3-30-2010

Recall: Thresholds

- R*
 - Too low # susceptibles => $R^* < 1$: # of infectives declining
 - Too high # susceptibles => $R^* > 1$: # of infectives rising
- Outflow from susceptibles (infections) is determined by the # of Infectives
- Delays:
 - For a while after infectives start declining, they still deplete susceptibles sufficiently for susceptibles to decline
 - For a while after infectives start rising, the # of infections is insufficient for susceptibles to decline

Effective Reproductive Number: R*

- Number of individuals infected by an 'index' infective in the current epidemiological context
- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected
 - # (Fraction) of Susceptibles
- Affects
 - Whether infection spreads
 - If R_{*}> 1, # of cases will rise, If R_{*}<1, # of cases will fall
 - Alternative formulation: Largest real eigenvalue <> 0
 - Endemic Rate

Basic Reproduction Number: R₀

- Number of individuals infected by an 'index' infective in an otherwise disease-free equilibrium
 - This is just R_{*} at disease-free equilibrium all (other) people in the population are susceptible other than the index infective
- Depends on
 - Contact number
 - Transmission probability
 - Length of time infected
- Affects
 - Whether infection spreads
 - If $R_0 > 1$, Epidemic Takes off, If $R_0 < 1$, Epidemic dies out
 - Alternative formulation: Largest real eigenvalue <> 0
 - Initial infection rise $\propto \exp(t^*(R0-1)/D)$
 - Endemic Rate

Recall: A Critical Throttle on Infection Spread: Fraction Susceptible (f)

- The fraction susceptible (here, S/N) is a key quantity limiting the spread of infection in a population
 - Recognizing its importance, we give this name f to the fraction of the population that issusceptible
- If contact patterns & infection duration remain unchanged and, then mean # of individuals infected by an infective over the course of their infection is f*R₀

Recall: Endemic Equilibrium

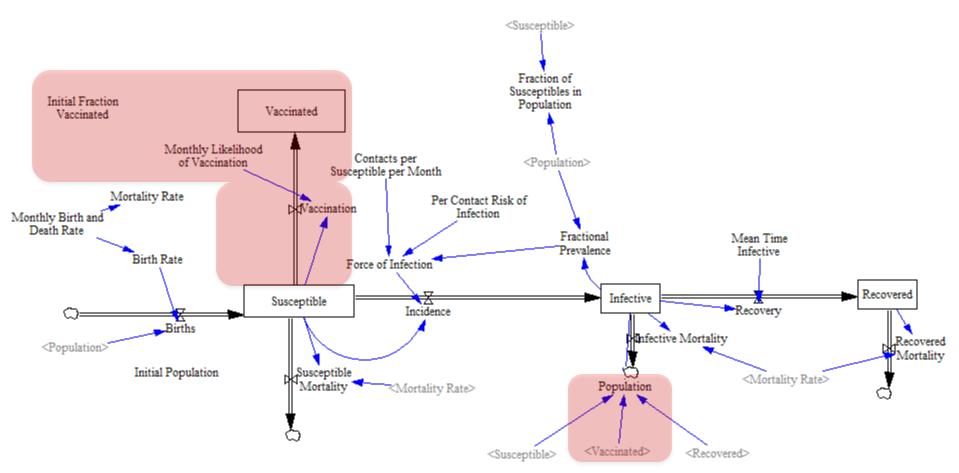
- Inflow=Outflow \Rightarrow (S/N)·R₀=f·R₀=1
 - Every infective infects a "replacement" infective to keep equilibrium
 - Just enough of the population is susceptible to allow this replacement
- The higher the R₀, the lower the fraction of susceptibles in equilibrium!
 - Generally some susceptibles remain: At some point in epidemic, susceptibles will get so low that can't spread

Equilibrium Behaviour

- With Births & Deaths, the system can approach an "endemic equilibrium" where the infection stays circulating in the population – but in balance
- The balance is such that (simultaneously)
 - The rate of new infections = The rate of immigration
 - Otherwise # of susceptibles would be changing!
 - The rate of new infections = the rate of recovery
 - Otherwise # of infectives would be changing!

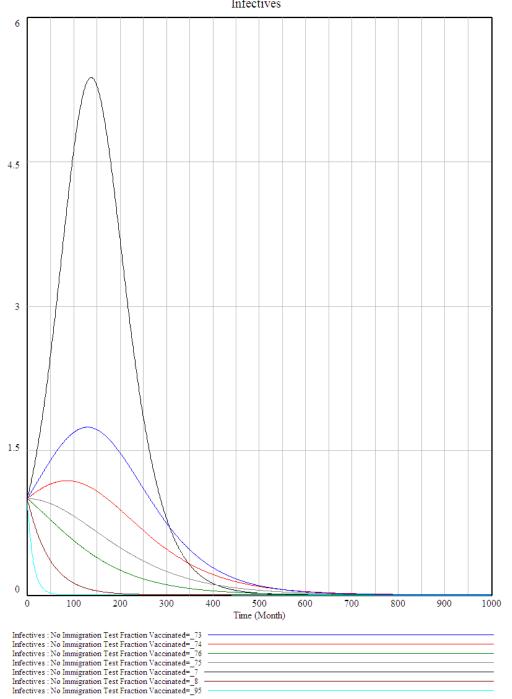
Equilibria

- Disease free
 - No infectives in population
 - Entire population is susceptible
- Endemic
 - Steady-state equilibrium produced by spread of illness
 - Assumption is often that children get exposed when young
- The stability of the these equilibria (whether the system departs from them when perturbed) depends on the parameter values
 - For the disease-free equilibrium on R_0


Adding Vaccination Stock

- Add a
 - "Vaccinated" stock
 - A constant called "Monthly Likelihood of Vaccination"
 - "Vaccination" flow between the "Susceptible" and "Vaccinated" stocks
 - The rate is the stock times the constant above
- Set initial population to be divided between 2 stocks
 - Susceptible
 - Vaccinated
- Incorporate "Vaccinated" in population calculation

Additional Settings


- c= 10
- Beta=.04
- Duration of infection = 10
- Birth & Death Rate=0

Adding Stock

Experiment with Different Initial Vaccinated Fractions

• Fractions = 0.25, 0.50, 0.6, 0.7, 0.8

Critical Immunization Threshold

 Consider an index infective arriving in a "worst case" scenario when noone else in the population is infective or recovered from the illness

- In this case, that infective is most "efficient" in spreading

- The goal of vaccination is keep the fraction susceptible low enough that infection cannot establish itself even in this worst case
 - We do this by administering vaccines that makes a person (often temporarily) immune to infection
- We say that a population whose f is low enough that it is resistant to establishment of infection exhibits "herd immunity"

Critical Immunization Threshold

- Vaccination seeks to lower *f* such that *f**R₀<1
- Worst case: Suppose we have a population that is divided into immunized (vaccinated) and susceptible
 - Let $\ensuremath{\mathsf{q}}_{\ensuremath{\mathsf{c}}}$ be the critical fraction immunized to stop infection
 - $Then f=1-q_c, f^*R_0 < 1 \Longrightarrow (1-q_c)^*R_0 < 1 \Longrightarrow q_c > 1-(1/R_0)$
- So if R₀ = 4 (as in our example), q_c=0.75(i.e. 75% of population must be immunized just as we saw!)